Commit 4485971c authored by hucy's avatar hucy

fix:向量

parent 3f2391a4
...@@ -136,4 +136,11 @@ export const MenuList = [ ...@@ -136,4 +136,11 @@ export const MenuList = [
link: '/vue-konva', link: '/vue-konva',
active: false, active: false,
}, },
{
title: '向量',
caption: 'JavaScript 线性代数:向量',
icon: require('./menuListIcons/amis.svg'),
link: '/vector',
active: false,
},
]; ];
<!--
* JavaScript 线性代数:向量
* https://juejin.cn/post/6844903859689619469
-->
<script setup lang="ts">
import { reactive, onMounted } from 'vue';
import { Vector } from './utils';
interface Point {
x: number;
y: number;
gap?: number;
[proppName: string]: any;
}
const stageSize = reactive({
width: 1200,
height: 800,
gridGap: 100,
});
const state = reactive({
canvasDom: null as any,
pen: null as any,
});
onMounted(() => {
state.canvasDom = document.getElementById('canvas-grid');
state.pen = state.canvasDom.getContext('2d');
drawGrid();
const pointO = { x: 500, y: 300, name: 'O' };
const pointA = { x: 600, y: 200, name: 'A' };
const pointB = { x: 400, y: 200, name: 'B' };
drawVector(pointO, pointA);
drawVector(pointO, pointB);
// 加法
const pointC = new Vector(pointO, pointA).add(pointB);
const len = new Vector(pointO, pointB).length;
console.log('OB向量长度', len);
drawVector(pointO, pointC, '#21BA45');
// 减
// const pointD = new Vector(pointO, pointB).subtract(pointA);
// console.log('pointD', pointD);
// drawVector(pointO, pointD, '#FFA000');
// 求夹角
const angle = new Vector(pointO, pointA).dotProduct(pointB);
console.log('夹角', angle);
});
function drawVector(pointX: Point, pointY: Point, color = '#F44336') {
const pen = state.pen;
pen.save();
pen.beginPath();
pen.moveTo(pointX.x, pointX.y);
pen.lineTo(pointY.x, pointY.y);
pen.lineWidth = 4;
pen.strokeStyle = color;
pen.stroke();
pen.fillText(pointX.name, pointX.x, pointX.y);
pen.fillText(pointY.name, pointY.x, pointY.y);
pen.restore();
}
// 网格线
function drawGrid() {
let canvas: any = document.getElementById('canvas-grid');
let pen = canvas.getContext('2d');
// 绘制网格
const step = stageSize.gridGap;
const h = stageSize.height;
const w = stageSize.width;
const w_l = w / step;
const h_l = h / step;
// 横着的线
pen.save();
for (let i = 0; i <= h_l; i++) {
pen.beginPath();
pen.moveTo(0, i * step);
pen.lineTo(w, i * step);
pen.stroke();
}
// 竖着的线
for (let i = 0; i <= w_l; i++) {
pen.beginPath();
pen.moveTo(i * step, 0);
pen.lineTo(i * step, h);
pen.stroke();
}
pen.restore();
}
</script>
<template>
<div class="center">
<div class="canvas-box">
<canvas
id="canvas-grid"
:width="stageSize.width"
:height="stageSize.height"
style="position: absolute"
></canvas>
</div>
</div>
</template>
<style lang="scss" scoped>
.canvas-box {
box-sizing: border-box;
width: 1200px;
height: 800px;
border: 1px solid #000;
position: relative;
}
</style>
export default [
{
path: 'vector',
name: 'VECTOR',
component: () => import('./IndexPage.vue'),
meta: {
title: '向量',
permission: ['*'],
keepalive: true,
},
},
];
interface Point {
x: number;
y: number;
[proppName: string]: any;
}
/**
* 创建一个2维度向量类
*/
export class Vector {
components: any;
length: number;
constructor(...components: any) {
this.components = components;
const pointO = components[0];
const pointA = components[1];
const diffX = pointA.x - pointO.x;
const diffY = pointA.y - pointO.y;
this.length = Math.sqrt(diffX * diffX + diffY * diffY);
}
// 加法
add(components: any) {
const pointO = this.components[0];
const pointA = this.components[1];
const pointB = components;
return {
x: pointA.x + pointB.x - pointO.x,
y: pointA.y + pointB.y - pointO.y,
};
}
// 减
subtract(components: any) {
const pointO = this.components[0];
const pointA = this.components[1];
const pointC = components;
return {
x: pointA.x - pointC.x + pointO.x,
y: pointA.y - pointC.y + pointO.y,
};
}
// 向量点乘:(内积)
// https://zhuanlan.zhihu.com/p/359975221
dotProduct(components: any) {
const pointO = this.components[0];
const pointA = this.components[1];
const pointB = components;
const _pointA = { x: pointA.x - pointO.x, y: pointA.y - pointO.y };
const _pointB = { x: pointB.x - pointO.x, y: pointB.y - pointO.y };
// 求向量OA与OB的夹角
// AB向量 = OB向量 - OA向量
// const ab_x = _pointB.x - _pointA.x;
// const ab_y = _pointB.y - _pointA.y;
// OA向量 * OB向量 > 0,夹角在0~90度之间
// OA向量 * OB向量 = 0,正交,相互垂直
// OA向量 * OB向量 < 0,夹角在90度~180度之间
//
// OA向量 * OB向量 = x1*x2 + y1*y2;
const abMultiplication = _pointA.x * _pointB.x + _pointA.y * _pointB.y;
// OA向量的模
const abs_OA = new Vector({ x: 0, y: 0 }, _pointA).length;
// OB向量的模
const abs_OB = new Vector({ x: 0, y: 0 }, _pointB).length;
// 得到弧度值
let result = Math.acos(abMultiplication / (abs_OA * abs_OB));
// 转为角度值
result = toAngle(result);
const arr = [];
arr.push(_pointA);
arr.push({ x: 0, y: 0 });
arr.push(_pointB);
const is_clockwise = isClockwise(arr);
if (is_clockwise) {
// 顺时针方向 大于180度
result = 360 - result;
} else {
}
return result;
}
}
/**
* 判断坐标数组是否顺时针(默认为false)
* @param {Point[]} points 点坐标数组 [{x:0,y:0}...]
* @returns {boolean} 是否顺时针
*/
export function isClockwise(points: Point[]) {
// 三个点可以判断矢量是顺时针旋转还是逆时针旋转的,但由于可能存在凹边,所以并不是任意三点都可以正确反映多边形的走向
// 因此需要取多边形中绝对是凸边的点来判断,
// 多边形中的极值点(x最大或x最小或y最大或y最小)它与相邻两点构成的边必然是凸边,因此我们先取出多边形中的极值点,再由极值点和其前后两点去判断矢量的走向,从而判断出多边形的走向。
if (!Array.isArray(points) || points.length < 3) {
console.error('多边形坐标集合不能少于3个');
return false;
}
let coords = JSON.parse(JSON.stringify(points));
if (coords[0] === coords[coords.length - 1]) {
coords = coords.slice(0, coords.length - 1);
}
coords = coords.reverse();
let maxXIndex = 0;
let maxX = parseFloat(coords[maxXIndex].x);
let c1;
let c2;
let c3;
for (let i = 0; i < coords.length; i++) {
if (parseFloat(coords[i].x) > maxX) {
maxX = parseFloat(coords[i].x);
maxXIndex = i;
}
}
if (maxXIndex === 0) {
c1 = coords[coords.length - 1];
c2 = coords[maxXIndex];
c3 = coords[maxXIndex + 1];
} else if (maxXIndex === coords.length - 1) {
c1 = coords[maxXIndex - 1];
c2 = coords[maxXIndex];
c3 = coords[0];
} else {
c1 = coords[maxXIndex - 1];
c2 = coords[maxXIndex];
c3 = coords[maxXIndex + 1];
}
const x1 = parseFloat(c1.x);
const y1 = parseFloat(c1.y);
const x2 = parseFloat(c2.x);
const y2 = parseFloat(c2.y);
const x3 = parseFloat(c3.x);
const y3 = parseFloat(c3.y);
const s = (x1 - x3) * (y2 - y3) - (x2 - x3) * (y1 - y3);
return s < 0;
}
/**
* 转为弧度值
*/
export function toRadian(val: number) {
return (val * Math.PI) / 180;
}
/**
* 转角度值
*/
export function toAngle(val: number) {
return (val * 180) / Math.PI;
}
This diff is collapsed.
/*
* @Description: 多边形核心算法
* 源码Gitee:https://gitee.com/dhzx/js-polygon-algorithm
*/
interface Point {
x: number;
y: number;
gap?: number;
[proppName: string]: any;
}
/**
* 获取多边形中心点
* @param {Point[]} points 点坐标数组 [{x:0,y:0}...]
*/
export function getPolygonCenter(points: Point[]) {
if (!Array.isArray(points) || points.length < 3) {
console.error('多边形坐标集合不能少于3个');
return;
}
const result = { x: 0, y: 0 };
points.forEach((p) => {
result.x += p.x;
result.y += p.y;
});
result.x /= points.length;
result.y /= points.length;
return result;
}
/**
* 获取多边形重心(质心)
* @param {Point[]} points 点坐标数组 [{x:0,y:0}...]
*/
export function getPolygonBaryCenter(points: Point[]) {
if (!Array.isArray(points) || points.length < 3) {
console.error('多边形坐标集合不能少于3个');
return;
}
const result = { x: 0, y: 0 };
let area = 0;
for (let i = 1; i <= points.length; i++) {
const curX = points[i % points.length].x;
const curY = points[i % points.length].y;
const nextX = points[i - 1].x;
const nextY = points[i - 1].y;
const temp = (curX * nextY - curY * nextX) / 2;
area += temp;
result.x += (temp * (curX + nextX)) / 3;
result.y += (temp * (curY + nextY)) / 3;
}
result.x /= area;
result.y /= area;
return result;
}
/**
* 判断点是否在多边形内部
* @param {Point} point 点坐标
* @param {Point[]} points 点坐标数组 [{x:0,y:0}...]
* @returns
*/
export function isInPolygon(point: Point, points: Point[]) {
if (!Array.isArray(points) || points.length < 3) {
console.error('多边形坐标集合不能少于3个');
return;
}
const n = points.length;
let nCross = 0;
for (let i = 0; i < n; i++) {
const p1 = points[i];
const p2 = points[(i + 1) % n];
// 求解 y=p.y 与 p1 p2 的交点
// p1p2 与 y=p0.y平行
if (p1.y === p2.y) continue;
// 交点在p1p2延长线上
if (point.y < Math.min(p1.y, p2.y)) continue;
// 交点在p1p2延长线上
if (point.y >= Math.max(p1.y, p2.y)) continue;
// 求交点的 X 坐标
const x = ((point.y - p1.y) * (p2.x - p1.x)) / (p2.y - p1.y) + p1.x;
// 只统计单边交点
if (x > point.x) nCross++;
}
return nCross % 2 === 1;
}
/**
* 缩放多边形坐标
* @decoration 需配合顺时针判断方法一起使用
* @param {Point[]} points 点坐标数组 [{x:0,y:0}...]
* @param {number} extra 外延大小。为正: 向外扩; 为负: 向内缩
* @return {Point[]} 扩展或缩小后的多边形点坐标数组
*/
export function scalePolygon2(points: Point[], extra: number) {
if (!Array.isArray(points) || points.length < 3) {
console.error('多边形坐标集合不能少于3个');
return;
}
const ps = points;
// 通过顺时针判断取正值还是负值
const extra0 = isClockwise(ps) ? -extra : extra;
const norm = (x: number, y: number) => Math.sqrt(x * x + y * y);
const len = ps.length;
const polygon = [];
for (let i = 0; i < len; i++) {
const point = ps[i];
const point1 = ps[i === 0 ? len - 1 : i - 1];
const point2 = ps[i === len - 1 ? 0 : i + 1];
// 向量PP1
const vectorX1 = point1.x - point.x; // 向量PP1 横坐标
const vectorY1 = point1.y - point.y; // 向量PP1 纵坐标
const n1 = norm(vectorX1, vectorY1); // 向量的平方根 为了对向量PP1做单位化
let vectorUnitX1 = vectorX1 / n1; // 向量单位化 横坐标
let vectorUnitY1 = vectorY1 / n1; // 向量单位化 纵坐标
// 向量PP2
const vectorX2 = point2.x - point.x; // 向量PP2 横坐标
const vectorY2 = point2.y - point.y; // 向量PP2 纵坐标
const n2 = norm(vectorX2, vectorY2); // 向量的平方根 为了对向量PP1做单位化
let vectorUnitX2 = vectorX2 / n2; // 向量单位化 横坐标
let vectorUnitY2 = vectorY2 / n2; // 向量单位化 纵坐标
// PQ距离
const vectorLen =
-extra0 /
Math.sqrt(
(1 - (vectorUnitX1 * vectorUnitX2 + vectorUnitY1 * vectorUnitY2)) / 2
);
// 根据向量的叉乘积来判断角是凹角还是凸角
if (vectorX1 * vectorY2 + -1 * vectorY1 * vectorX2 < 0) {
vectorUnitX2 *= -1;
vectorUnitY2 *= -1;
vectorUnitX1 *= -1;
vectorUnitY1 *= -1;
}
// PQ的方向
const vectorX = vectorUnitX1 + vectorUnitX2;
const vectorY = vectorUnitY1 + vectorUnitY2;
const n = vectorLen / norm(vectorX, vectorY);
const vectorUnitX = vectorX * n;
const vectorUnitY = vectorY * n;
const polygonX = vectorUnitX + point.x;
const polygonY = vectorUnitY + point.y;
polygon[i] = { x: polygonX, y: polygonY };
}
return polygon;
}
/**
* 缩放多边形坐标
* @decoration 需配合顺时针判断方法一起使用
* @param {Point[]} points 点坐标数组 [{x:0,y:0}...]
* @param {number} extra 外延大小。为正: 向外扩; 为负: 向内缩
* @return {Point[]} 扩展或缩小后的多边形点坐标数组
*/
export function scalePolygon(points: Point[], extra = 0) {
if (!Array.isArray(points) || points.length < 3) {
console.error('多边形坐标集合不能少于3个');
return;
}
const ps = points;
// 通过顺时针判断取正值还是负值
// const extra0 = isClockwise(ps) ? -extra : extra;
const norm = (x: number, y: number) => Math.sqrt(x * x + y * y);
const len = ps.length;
const polygon = [];
for (let i = 0; i < len; i++) {
let extra0;
if (extra) {
extra0 = isClockwise(ps) ? -extra : extra;
} else {
const _gap = ps[i].gap || 0;
extra0 = isClockwise(ps) ? -_gap : _gap;
}
const point = ps[i];
const point1 = ps[i === 0 ? len - 1 : i - 1];
const point2 = ps[i === len - 1 ? 0 : i + 1];
// 向量PP1
const vectorX1 = point1.x - point.x; // 向量PP1 横坐标
const vectorY1 = point1.y - point.y; // 向量PP1 纵坐标
const n1 = norm(vectorX1, vectorY1); // 向量的平方根 为了对向量PP1做单位化
let vectorUnitX1 = vectorX1 / n1; // 向量单位化 横坐标
let vectorUnitY1 = vectorY1 / n1; // 向量单位化 纵坐标
// 向量PP2
const vectorX2 = point2.x - point.x; // 向量PP2 横坐标
const vectorY2 = point2.y - point.y; // 向量PP2 纵坐标
const n2 = norm(vectorX2, vectorY2); // 向量的平方根 为了对向量PP1做单位化
let vectorUnitX2 = vectorX2 / n2; // 向量单位化 横坐标
let vectorUnitY2 = vectorY2 / n2; // 向量单位化 纵坐标
// PQ距离
const vectorLen =
-extra0 /
Math.sqrt(
(1 - (vectorUnitX1 * vectorUnitX2 + vectorUnitY1 * vectorUnitY2)) / 2
);
// 根据向量的叉乘积来判断角是凹角还是凸角
if (vectorX1 * vectorY2 + -1 * vectorY1 * vectorX2 < 0) {
vectorUnitX2 *= -1;
vectorUnitY2 *= -1;
vectorUnitX1 *= -1;
vectorUnitY1 *= -1;
}
// PQ的方向
const vectorX = vectorUnitX1 + vectorUnitX2;
const vectorY = vectorUnitY1 + vectorUnitY2;
const n = vectorLen / norm(vectorX, vectorY);
const vectorUnitX = vectorX * n;
const vectorUnitY = vectorY * n;
const polygonX = vectorUnitX + point.x;
const polygonY = vectorUnitY + point.y;
polygon[i] = { x: polygonX, y: polygonY };
}
return polygon;
}
/**
* 判断坐标数组是否顺时针(默认为false)
* @param {Point[]} points 点坐标数组 [{x:0,y:0}...]
* @returns {boolean} 是否顺时针
*/
export function isClockwise(points: Point[]) {
// 三个点可以判断矢量是顺时针旋转还是逆时针旋转的,但由于可能存在凹边,所以并不是任意三点都可以正确反映多边形的走向
// 因此需要取多边形中绝对是凸边的点来判断,
// 多边形中的极值点(x最大或x最小或y最大或y最小)它与相邻两点构成的边必然是凸边,因此我们先取出多边形中的极值点,再由极值点和其前后两点去判断矢量的走向,从而判断出多边形的走向。
if (!Array.isArray(points) || points.length < 3) {
console.error('多边形坐标集合不能少于3个');
return false;
}
let coords = JSON.parse(JSON.stringify(points));
if (coords[0] === coords[coords.length - 1]) {
coords = coords.slice(0, coords.length - 1);
}
coords = coords.reverse();
let maxXIndex = 0;
let maxX = parseFloat(coords[maxXIndex].x);
let c1;
let c2;
let c3;
for (let i = 0; i < coords.length; i++) {
if (parseFloat(coords[i].x) > maxX) {
maxX = parseFloat(coords[i].x);
maxXIndex = i;
}
}
if (maxXIndex === 0) {
c1 = coords[coords.length - 1];
c2 = coords[maxXIndex];
c3 = coords[maxXIndex + 1];
} else if (maxXIndex === coords.length - 1) {
c1 = coords[maxXIndex - 1];
c2 = coords[maxXIndex];
c3 = coords[0];
} else {
c1 = coords[maxXIndex - 1];
c2 = coords[maxXIndex];
c3 = coords[maxXIndex + 1];
}
const x1 = parseFloat(c1.x);
const y1 = parseFloat(c1.y);
const x2 = parseFloat(c2.x);
const y2 = parseFloat(c2.y);
const x3 = parseFloat(c3.x);
const y3 = parseFloat(c3.y);
const s = (x1 - x3) * (y2 - y3) - (x2 - x3) * (y1 - y3);
return s < 0;
}
...@@ -5,6 +5,7 @@ import TREE from '../modules/tree/route'; ...@@ -5,6 +5,7 @@ import TREE from '../modules/tree/route';
import AMIS from '../modules/amis/route'; import AMIS from '../modules/amis/route';
import VUE_STUDY from '../modules/vue-study/route'; import VUE_STUDY from '../modules/vue-study/route';
import VUE_KONVA from '../modules/vue-konva/route'; import VUE_KONVA from '../modules/vue-konva/route';
import VECTOR from '../modules/vector/route';
const routes: RouteRecordRaw[] = [ const routes: RouteRecordRaw[] = [
{ {
...@@ -133,6 +134,7 @@ const routes: RouteRecordRaw[] = [ ...@@ -133,6 +134,7 @@ const routes: RouteRecordRaw[] = [
...AMIS, ...AMIS,
...VUE_STUDY, ...VUE_STUDY,
...VUE_KONVA, ...VUE_KONVA,
...VECTOR,
], ],
}, },
], ],
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment